

This activity has received funding from the European Institute of Innovation and Technology (EIT), a body of the European Union, under the Horizon 2020, the EU Framework Programme for Research and Innovation

Topics: Rocket Science NOTES FOR THE LECTURER

15/07/2020

Valuable sources of information

European Space Agency: https://www.esa.int/Education/The_rocket_principal

NASA: https://www.grc.nasa.gov/www/k-12/rocket/TRCRocket/rocket_principles.html

Tyranny of the rocket equation: <u>https://www.nasa.gov/mission_pages/station/expeditions/expedition30/tryanny.html</u>

Everyday Astronaut on rocket engines: <u>https://www.youtube.com/watch?v=LbH1ZDImaI8&list=PLWzKfs3icbT6yhDTpO1GyDIz9AXdWSiGr&index=2</u>

More websites and recources are provided along the power point presentation in the comments section

This activity has received funding from the European Institute of Innovation and Technology (EIT), a body of the European Union, under the Horizon 2020, the EU Framework Programme for Research and Innovation

Topic: Rocket Science

15/07/2020

Workshop structure

1) Why space?

2) Basic principles

3) Rocket engines

4) Do you want to do rocket science?

This activity has received funding from the European Institute of Innovation : Technology (EIT), a body of the European Union, under the Horizon 2020, the Framework Programme for Research and Innovation NASA

400

Picture source

covery

1) Why space? Satellites

- Television
- Telephones and internet
- Navigation
- Weather forecast
- Climate & environmental monitoring
- Space science

(eit) Manufacturing

This activity has received funding from the European Institute of Innoval Technology (EIT), a body of the European Union, under the Horizon 2020 Framework Programme for Research and Innovation

Picture source:

1.) Why space? Selfie from the red planet

Finds Evidence of Persistent Liquid Water in the Past Confirms a Suitable Home for Life Organic Carbon Found in Mars Rocks Present and Active Methane in Mars' Atmosphere Radiation Could Pose Health Risks for Humans A Thicker Atmosphere and More Water in Mars' Past

This activity has received funding from the European Institute of Innovati Technology (EIT), a body of the European Union, under the Horizon 2020, Framework Programme for Research and Innovation

Picture source:

YML

1.) Why space? Space architecture and colonization

 Marsha is a 3D printed vertical habitat for humans on another planet

65

This activity has received funding from the European Institute of Innovation Technology (ETT), a body of the European Union, under the Horizon 2020, the Framework Programme for Research and Innovation

Picture source:

2) Basic principles Forces acting on a rocket Forces During launch After thrust has finished thrust The rocket needs to overcome the gravitational force of its weight and the aerodynamical drag resultant force = thrust - (drag + weight) The resultant force is sum of all • the forces acting on an object drag resultant force drag = drag + weight weight weight Rocket travels upwards. Momentum keeps rocket moving upwards. Speed becomes faster and faster. Speed decreases.

Picture source: <u>here</u>

2) Basic principles Orbit

- Once the rocket reaches the orbit it needs to be moving at orbital velocity
- Otherwise it would fall back to the Earth
- The thrusters are deployed in several stages in order to save mass in the higher altitudes

:YML

This activity has received funding from the European Institute of Innovation ar Technology (EIT), a body of the European Union, under the Horizon 2020, the E Framework Programme for Research and Innovation

Picture source: <u>here</u>

2) Basic principles Newton's 3rd law

- Newtons 3rd law enables sending objects to space
- Rockets are pushing hot gas at high velocities just like balloons are blowing air which moves them forward

ACTION	
Balloon goes up (Reaction)	
Air goes down (Action)	

YML

eit Manufacturing

activity has received funding from the European Institute of Innovation and noppy (ETI), a body of the European Innovation nework Programme for Research and Innovation

Picture source: <u>here</u>, <u>here</u>

2) Basic principles Conservation of momentum

- The basic concept of conservation of momentum allows us to derive the famous ROCKET EQUATION
- The terminal velocity is dependent on the exhaust velocity from the rocket nozzle and on the initial mass of the rocket including the fuel

$$v(t) = v_0 + v_e \ln \frac{M_0}{M(t)}$$

is activity has received funding from the European Institute of Innovation and chnology (EIT), a body of the European Union, under the Horizon 2020, the EU amework Programme for Research and Innovation

Picture source: <u>here</u>

2) Basic principles Means of transportation

- Energy density of fuel options dictates how much payload we can get from the surface of the Earth
- Our daily commute is considerably more efficient than any rocket launch ^(C)

	Percent Propellant	Percent Poyload
Queen Mary my Rickup Locomotive	э 4 7	30-60 } Surfac
fighter Jet Cargo Jet	30 40	20-40 } air
Rocket	85	2 } Space
Molotov Cocktail	54	> Explosi

Rocket 8	quation	Results for Earth Orbit
Propellant	Mass Percen	t Propellant
solid rocket kerosene-O2 Hypergols Hydrogen-O2	96 94 93 83	Percent PayLoad
Saturn V Shuttle Soyuz	85 85 91	4 1 2

This activity has received funding from the European Institute of Innovation and Technology (EIT), a body of the European Union, under the Horizon 2020, the EU Framework Programme for Research and Innovation

Picture source: <u>here</u>

3.) Rocket Engines

- Fuel and Oxidizer are pumped to the combustion chamber at the highest rate possible
- They react together and expand rapidly towards the nozzle
- The tremendous flow of hot gas is accelerated in the throat

This activity has received funding from the European Institute of Innovation and Technology (EIT), a body of the European Union, under the Horizon 2020, the EU Framework Programme for Research and Innovation

Picture source: here

3) Rocket Engines

Manufacturing

Picture source: <u>here</u>, <u>here</u>, <u>here</u>

Figure V-4 – Operation of the Turbopump

Video source: <u>here</u>

4) Do you want to do Rocket Science?

There is a great number of space agencies and private companies working in this field

Picture source: here, here

This activity has received funding from the European Institute of Innovation and Technology (EIT), a body of the European Union, under the Horizon 2020, the EU Framework Programme for Research and Innovation

